IA, LLM et ChatGPT : Comment fonctionne le coeur d'une IA générative avec CONFOR - Conseil et Formation
Comprendre les méthodes d'apprentissage derrière les modèles d'IA et savoir les mettre en oeuvre
Cette formation a pour but d’expliquer le fonctionnement des LLM et de la diffusion stable, qui sont des modèles utilisés en IA notamment par l’outil très connu “ChatGPT”, et d'apprendre à mettre en place ces types de modèles. Durée : 2 jours (formation possible en présentiel ou distanciel)
À propos de cette formation
Saint-Herblain
44
À partir de 1 900€ HT
2 jours
14 heures
Action de formation
Éligible OPCO
Chiffres clés
10
Très bien
Taux de satisfaction à chaud : 10 / 10
Taux de satisfaction à froid : 10 / 10
100%
Taux de réussite : 100%
2023
Date de création
En savoir plus
- Savoir distinguer l’apprentissage supervisé et l’apprentissage non supervisé
- Comprendre le fonctionnement et l'entraînement d’un LLM
- Comprendre le fonctionnement et l'entraînement de la diffusion stable
- Savoir mettre en place son propre apprentissage sur un LLM avec le fine tuning
- Savoir mettre en place son propre apprentissage sur la diffusion stable avec les LORA
-
Rappels sur l’IA générative
- Qu’est-ce qu’une IA générative ?
- Qu’est-ce que n’est pas une IA générative ?
- L’écosystème des IA génératives : ChatGPT, Stable Diffusion, etc.
- Atelier : Prompter son voisin pour lui faire rédiger un résumé de film
-
Fonctionnement d’un LLM
- Vue d'ensemble des modèles NLP et historique
- Fonctionnement de base des modèles de traitement de langue
- Définition et portée des LLM
- Présentation de l'architecture des Transformers
- Attention et mécanisme d'auto-attention
- Techniques de Tokenization : BPE, WordPiece, SentencePiece
- Apprentissage supervisé, semi-supervisé et non supervisé
- Fine-tuning et Transfer Learning
- Pré-entraînement et entraînement distribué
- Biais et équité
- Éthique, confidentialité et sécurité
- Tendances futures et recherche
-
Fonctionnement de la diffusion stable
- Vue d'ensemble des méthodes de génération d’images
- Historique et évolution vers la diffusion stable
- Comparaison avec d'autres techniques (GANs, VAEs, etc.)
- Théorie de la diffusion
- Architectures de réseaux utilisées dans la diffusion stable
- Utiliser et entraîner un modèle de diffusion stable
- Questions éthiques
- Tendances futures et recherche
-
Mise en place de fine tuning avec GPT
- Pourquoi mettre en place un fine tuning ?
- Avantages et inconvénients du fine tuning
- Déterminer le but du modèle
- Préparer les données pour l’apprentissage
- Création d’un modèle de fine tuning avec GPT
- Utilisation du modèle de fine tuning
- Atelier : Créer un fine tuning pour un ChatBot sarcastique
-
Création d’un LORA pour la diffusion stable
- Présentation du concept des LORA
- Présentation de Khoya et de civitai
- Avantages et inconvénients des LORA
- Déterminer la base du modèle
- Préparer les données pour l’apprentissage
- Création d’un LORA avec Khoya
- Utilisation du LORA
- Atelier : Créer un LORA pour générer des portraits de soi-même !
Parmi les formateurs
Cédric MILLAURIAUX est développeur depuis 10 ans. Il a dans un premier temps travaillé pour le ministère des finances et pour le ministère de l’intérieur avant de devenir développeur mobile à son propre compte il y a 6 ans. Il travaille principalement sur des applications dans le domaine de la santé et des objets connectés. La formation et le transfert de compétences sont des activités qui lui tiennent à cœur, c’est pourquoi il accompagne depuis plusieurs années de nombreuses entreprises dans leur montée en compétences ainsi que les étudiants de plusieurs écoles de la région nantaise.
L'organisme de formation
Conseil et Formation en informatique / numérique
Découvrir l'organisme de formationPublic concerné
- Développeur
- Prompt Engineer
- Connaissances intermédiaires sur l’IA et les LLM ou avoir suivi les formations "IA, LLM et ChatGPT : Découvrir ce qu’est l’IA générative, sans ordinateur !" + "ChatGPT, Copilot, Code Llama 2 : Développer avec l’IA"
- Un compte "invité" openAI vous sera fourni pour la formation, il vous faudra cependant une adresse mail qui sera transmise à openAI pour ce compte (le compte sera supprimé à l'issue de la formation) / vous pourrez utiliser votre compte openAI si vous en avez un (avec des crédits suffisants)
Conditions d'accès
Pour plus d'informations sur les modalités d'accessibilité pour cette formation, vous pouvez contacter directement adeschamps@confor.tech .
1 à 8 places
2 semaines
Plus qu'une formation !
- Accueil des apprenants dans une salle dédiée à la formation (si présentiel)
- Présentation du support via vidéoprojecteur (ou partage visio)
- Cours théoriques avec des présentations de cas d’exemple
- Compte de test OpenAI fourni aux participants pendant la durée de la formation
- Mise en pratique sous forme d'Ateliers
- Support PDF remis en fin de formation avec corrections des Ateliers Pratiques
D'autres formations qui pourraient vous intéresser
À partir de 4750€ HT
-
Action de formation
-
Formation éligible OPCO
Options de formation
À partir de 4325€ HT
-
Action de formation
-
Formation éligible OPCO
Options de formation